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Enumeration of directed animals on an infinite family of
lattices

Mireille Bousquet-Ḿelou†‡ and Andrew R Conway§‖
LaBRI, Universit́e Bordeaux 1, 351 cours de la Libération, 33405 Talence Cedex, France
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Abstract. We prove algebraic equations satisfied by the area generating function for directed
animals on an infinite family of regular, non-planar, two-dimensional graphs.

1. Introduction

A directed animal A on an oriented graph having an originO is a finite set of sites
containingO such that each point ofA is connected toO through an oriented path of the
graph having all its vertices inA. The area of A is the number of its vertices. Typically,
the graph in question is a regular lattice with the orientation of the bonds corresponding to
some preferred direction. Examples are given in the next section.

Directed animals are geometrical entities whose properties have been studied extensively
over the past fifteen odd years due to their interest in both combinatorics and statistical
physics. Few exact results are known. In 1982, Dharet al gave two conjectures on the
number of directed animals on the square and triangular lattices [1]. These conjectures can
be restated in the form of quadratic expressions for the corresponding generating functions,
and were then proved in several ways [2–6]. Dhar [6] also solved the enumeration problem
on a three-dimensional lattice through a correspondence with the hard-hexagon model
solved by Baxter [7]. The associated area generating function is again algebraic, but of
degree 12 [8].

Directed animals on other lattices have been enumerated by computer with the aim of
finding algebraic generating functions, with a marked lack of success other than for two
families of decorated lattices [9–11]. These studies include many variations on the theme
of animals, like bond-animals and trees (animals of cyclomatic index zero), but no algebraic
generating function has been found for them. Recent work may provide some reasons for
this [12].

The properties of directed animals have also been studied extensively. This was mostly
done by computer enumeration and numerical techniques, although some rigorous results
were also obtained. Properties associated with the shape of directed animals have been
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studied in, for example, [13–19]. Their perimeter and their cyclomatic index were studied
in, for example, [11, 19, 20].

All the two-dimensional directed animals mentioned above seem to fall into the same
universality class. Closely related to the study of directed animals, but distinguished by
significantly different properties (and thus a very different universality class) are undirected
animals (connected sets on a graph) also sometimes calledpolyominoesby combinatorialists.
Surveys can be found in [21–23].

The most successful method for proving a formula for the generating function of directed
animals has been to use, following Dhar [6], an equivalence to a hard particle gas model
[10, 11]. Theheaps of piecesapproach [4, 21, 24] of Viennot works in a more intuitive
manner for the square and triangular lattices, and has also been successful in other polyomino
problems [25].

Using Dhar’s method, we prove in this paper algebraic equations satisfied by the area
generating functions for directed animals on an infinite family of regular lattices. We derive
from these equations the asymptotic behaviour of the number of animals havingk vertices,
thus proving that all these models belong to the same universality class as the square lattice
directed animal model. The lattices are defined in section 2, in which we also state our
results, and the proof is given in section 3.

2. Results

We define an oriented latticeLn indexed by an integern > 2. The vertices ofLn are
labelled by the elements ofN2, and from each vertex(i, j) there aren emerging edges
leading to the vertices(i + r, j + 1), for 0 6 r < n. The origin isO = (0, 0). Note thatL2

is simply the oriented square lattice. More examples are shown in figure 1 and an animal
is drawn in figure 2.

Alternatively, one can constructLn as follows. Start from the directed square lattice,
and keep only one out of every(n−1) rows, that is the first row, the rown, the row 2n−1,
and so on (a row is perpendicular to the preferred direction). Add an edge between two
vertices of two consecutive rows if these vertices were linked by an oriented path in the
original square lattice. This leaves the latticeLn. As the number of vertices at distance at
mostr from the origin grows liker2, the lattice is said to be two dimensional.

Let n > 2. We prove in this paper that the area generating functionSn for directed

Figure 1. The latticesL2, L3 andL4 (all the edges are oriented upwards).

Figure 2. A directed animal onL3 (black vertices).
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animals onLn, defined by

Sn =
∑

{A:A is an animal onLn}
t |A| (1)

satisfies the following algebraic equation:

t2(1 + t)n−1 [1 + (n + 1)Sn]n+1 − [1 + t + (n − 1)Sn]n−1 (t − 2Sn)
2 = 0 . (2)

Note thatSn = 0 is an irrelevant solution of this equation. Moreover, whenn is odd, say
n = 2m+ 1, the polynomial on the left-hand side of (2) can be factored andSn satisfies the
following simpler equation:

t (1 + t)m [1 + (n + 1)Sn]m+1 + [1 + t + (n − 1)Sn]m (t − 2Sn) = 0 .

Hence,Sn is algebraic of degree (at most)n if n is even, and algebraic of degree (at most)
(n + 1)/2 if n is odd.

Here are the first few equations satisfied by the seriesSn:

(1 − 3t)(S2 + 1)S2 − t = 0

(1 − 4t − 4t2)(2S3 + 1)S3 − t (1 + t) = 0

(27− 135t − 275t2 − 125t3)(S4 + 1)S3
4 + (9 − 54t − 110t2 − 50t3)S2

4

+(1 + t)(1 − 12t − 10t2)S4 − t (1 + t)2 = 0

2(4 − 27t − 54t2 − 27t3)(2S5 + 1)S2
5 + (1 + t)(1 − 12t − 9t2)S5 − t (1 + t)2 = 0 .

All other (non-trivial) exactly known results for generating functions for directed animals
on two-dimensional lattices (square, triangular, decorated square and triangular [11]) have
been expressible as an algebraic equation, quadratic in the generating function. Furthermore,
in each case the generating function diverges near the critical pointt = 1/µ with a behaviour
like (1−µt)−1/2 for some lattice-dependentµ. This means that the number of animals with
k sites grows likek−1/2µk. Numerical analysis of other two-dimensional lattices, for which
one does not have explicit generating functions, has indicated the same asymptotic behaviour
(e.g. [9]).

This common behaviour indicates that all these models belong to the same universality
class, and it might be expected that the directed animals onLn exhibit the same behaviour
despite the higher degree of the algebraic equation satisfied bySn. This is true and can be
proved as follows.

Let Tn be the series defined by

Tn = t − 2Sn

1 + (n + 1)Sn

. (3)

Since Sn = t + o(t), we haveTn = −t + o(t). Moreover, equation (2) implies that
fn(t) = fn(Tn) wherefn(u) is the polynomialu2(1 + u)n−1. A study of fn (see figure 3)
shows thatTn is an analytic function oft for −2/(n + 1) < t < tn wheretn is the positive
solution of

fn(tn) = fn

(
− 2

n + 1

)
= 4

(n − 1)n−1

(n + 1)n+1
.

Moreover,Tn cannot be continuously defined in the neighbourhood oftn. As tn < 2/(n+1),
the smallest singularity ofTn is tn. When t → t−n , thenTn → −2/(n + 1)+. Inverting (3)
leads to

Sn = t − Tn

2 + (n + 1)Tn
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Figure 3. A typical (n = 3) graph offn(u) = u2(1 + u)n−1.

which proves thattn is also the smallest singularity ofSn. Applying Taylor’s formula around
−2/(n + 1) and tn gives

fn

(
v − 2

n + 1

)
= 4(n − 1)n−1

(n + 1)n+1
+ v2

2
f ′′

n

(
− 2

n + 1

)
+ o(v2)

and

fn(tn − u) = 4(n − 1)n−1

(n + 1)n+1
− uf ′

n(tn) + o(u) .

This shows that ast → t−n ,

Tn = − 2

n + 1
+

√
−2f ′

n(t)

f ′′
n (−2/(n + 1))

(tn − t) + o(tn − t) .

Hence, up to a multiplicative constant (which can be made explicit),

Sn ∼ (tn − t)−1/2

(meaning that
√

tn − tSn tends to a constant whent tends totn). Thus the number ofk-site
animals onLn is asymptotically equivalent toAnk

−1/2µk
n as expected, with

(1 + µn)
n−1

µn+1
n

= 4
(n − 1)n−1

(n + 1)n+1
. (4)

Let vn = µn/(n + 1). We can derive from (4) that(vn)n is an increasing positive sequence.
Let v be its limit in R ∪ {+∞}. From equation (4) we derive exp(v−1 + 2) = 4v2, which
givesv = 1.795 56. . . . Henceµn ∼ 1.795 56. . . n asn → ∞.

3. Proof

We use a similar argument to that used by Dhar in [6]: we prove that the generating function
Sn is the negative of the density of the hard particle model of activity−t/(1 + t) on the
lattice formed with the first two rows ofLn.
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Figure 4. The cyclic latticeL(8)
3 and an animal of source

{1, 3, 8}.

Let n > 2 be fixed. ForN > 2, consider the latticeL(N)
n , which is similar toLn but has

a finite widthN and cyclic boundary conditions. In other words, its set of vertices is [N ]×N
where [N ] = Z/NZ = {1, 2, . . . , N}, and the edges still go from(i, j) to (i + r, j + 1)

for 0 6 r < n. The latticeL(8)

3 is drawn in figure 4 (edges being oriented away from the
centre). As indicated on this figure, the vertices are labelled with 1, 2, . . . , N on each row.
A subset of vertices of a row will often be denoted by the set of corresponding labels.

In this section we consider animals that may have asourceformed of several vertices.
Let C ⊂ [N ] be a subset of vertices of the first row. A directed animalA of sourceC is a
finite set of vertices containingC such that any vertex ofA can be reached from a vertex
of C through an oriented path having all its vertices inA (see figure 4). LetS(N)

C be the
area generating function for animals of sourceC on L(N)

n . We clearly have

lim
N→∞

S
(N)

{1} = Sn (5)

whereSn is the generating function for animals onLn, defined by (1). Moreover, removing
the bottom row of an animal gives another animal. This remark provides a finite set of
recurrence relations defining the seriesS

(N)
C , for C ⊂ [N ]:

S
(N)
C = t |C| ∑

D⊂N (C)

S
(N)
D (6)

whereS
(N)

∅ = 1 andN (C) is the set of ‘upper’ neighbours ofC:

N (C) =
⋃
i∈C

{i, i + 1, . . . , i + n − 1} .

(Remember thati + N = i in Z/NZ.)
Now, consider the latticeR0 ∪R1 formed with the first two rows ofL(N)

n (see figure 5),
and suppose that a distribution of cells is given on the exterior rowR1. For D ⊂ R1, let
gD be the probability that all the vertices ofD are occupied, and letGD be the probability
that D is exactly the set of occupied vertices. From the cell distribution onR1 we derive
a cell distribution on the inner rowR0, obtained as follows: a vertexi lying on R0 will be
occupied by a cell

• with probability p if all its neighbours (onR1) are empty (0< p < 1),
• with probability 0 if at least one of its neighbours is occupied.

This transition is schematized in figure 5, in which a black vertex denotes an occupied site.
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Figure 5. The latticeR0 ∪ R1 and the transition fromR1 to R0 (for n = 3).

For C ⊂ R0, we definefC to be the probability that the vertices ofC are occupied, and
FC to be the probability thatC is exactly the set of occupied vertices ofR0. We clearly
have

fC = p|C| Prob(N (C) empty) .

Using the inclusion-exclusion principle, this can be rewritten as follows:

fC = p|C| ∑
D⊂N (C)

(−1)|D|gD . (7)

We can also expressFC in terms ofGD:

FC =
(

p

1 − p

)|C| ∑
D⊂R1\N (C)

(1 − p)N−|N̄ (D)|GD (8)

whereN̄ (D) is the set of ‘lower’ neighbours ofD:

N̄ (D) =
⋃
i∈D

{i, i − 1, . . . , i − n + 1} .

Note that|N̄ (D)| = |N (D)| for all D ⊂ [N ].
The cell distribution onR1 is said to bestationary if it is the same as the induced cell

distribution onR0. The theory of Markov chains implies that our transition has a unique
stationary distribution. For this distribution, equation (7) becomes

gC = p|C| ∑
D⊂N (C)

(−1)|D|gD .

Comparing this equation with (6) shows that, whent = −p,

S
(N)
C = (−1)|C|gC .

In particular, the generating functionS(N)

{1} for one-source directed animals onL(N)
n is the

negative of thedensity of the stationary distribution (witht = −p). The density is, by
definition,ρN = g{1}. According to (5), the generating function for directed animals onLn

is

Sn = −ρ∞ = − lim
N→∞

ρN .

The stationary distribution is easy to describe in this case: as in [6], it is the marginal
distribution of the hard particle distribution of activityp/(1−p) onR0∪R1. More precisely,
one can easily check, using (8), that the distribution given by

GD = 1

ZN

(
p

1 − p

)|D|
(1 − p)|N̄ (D)| (9)
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with

ZN =
∑

D⊂R1

(
p

1 − p

)|D|
(1 − p)|N̄ (D)|

is stationary. Thus we need to compute the densityρN of this one-dimensional gas model,
or at least its limitρ∞.

We are actually going to solve a more general model, depending on two variablesa and
b, and given by

GD = 1

ZN

a|D|b|N̄ (D)| .

The partition function is

ZN =
∑

D⊂[N ]

a|D|b|N̄ (D)|

and the density is

ρN = 1

N

1

ZN

∑
D

|D|a|D|b|N̄ (D)| = a

NZN

∂ZN

∂a
.

In what follows, the state of the verticesi, i + 1, . . . , i + n − 1 is described by a vector
σi ∈ {0, 1}n−1 for all i ∈ [N ]. The partition function can then be rewritten as

ZN =
∑

σ1,...,σN

( N∏
i=1

V (σi, σi+1)

)
whereσi runs over{0, 1}n−1 for all i 6 N andV = (V (σ, τ ))σ,τ is a square matrix defined as
follows: if σ = (s1, . . . , sn−1) andτ = (t2, . . . , tn) (note the different numbering schemes),
then

V (σ, τ) =


0 if (s2, . . . , sn−1) 6= (t2, . . . , tn−1)

ab if (s2, . . . , sn−1) = (t2, . . . , tn−1) ands1 = 1

b if (s2, . . . , sn−1) = (t2, . . . , tn−1) s1 = 0 andτ 6= (0, 0, . . . , 0)

1 otherwise .

Going back toZN , we have

ZN = tr
(
V N

) = λN
1 + · · · + λN

2n−1

whereλ1, . . . , λ2n−1 are the eigenvalues of the matrixV . The density of the model is thus

ρN = a

∑
i λ

N−1
i λ′

i∑
i λ

N
i

whereλ′
i denotes∂λi/∂a. WhenN tends to infinity, it tends to

ρ∞ = a
λ′

λ
(10)

whereλ is the dominant eigenvalue ofV . The characteristic polynomial ofV , denoted
P(x), can be calculated exactly:

P(x) = x2n−1−n

(
xn − xn−1(1 + ab) + a(1 − b)

n−2∑
k=0

xkbn−1−k

)
.
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Equivalently,

P(x) = x2n−1−n

b − x

[
abn(1 − b) − xn−1(x − 1)(x − b − ab)

]
.

Thus the dominant eigenvalueλ of V satisfiesλ 6= b and

abn(1 − b) = λn−1(λ − 1)(λ − b − ab) .

Differentiating with respect toa leads to

λ′ = λ(λ − 1)(λ − b)

a [(n − 1)(λ − 1)(λ − b − ab) + λ(2λ − 1 − b − ab)]
. (11)

We finally obtain the limit of the density by combining (10) and (11):

ρ∞ = (λ − 1)(λ − b)

(n − 1)(λ − 1)(λ − b − ab) + λ(2λ − 1 − b − ab)
.

In particular, the density of the model given by (9) tends to

ρ∞ = λ + p − 1

(n + 1)λ − (n − 1)

whenN → ∞, whereλ satisfies

p2(1 − p)n−1 = λn−1(λ − 1)2 .

As Sn = −ρ∞ when t = −p, equation (2) follows.
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